UDC 615.322.61

Djaouida NOUASRIA

Doctor of Plant Biology, Associate Professor at the Department of Ecology and Environment, Faculty of Sciences, 20 August 1955 University, Skikda, P.O. Box 26, El Hadaiek Road, Algeria, 21000 (dj.nouasria@univ-skikda.dz)

ORCID: 0009-0008-9305-3318

Djamila AYARI

Doctor of Biological Science, Associate Professor, Aquatic and Terrestrial Ecosystems Laboratory at the Department of Biology, Faculty of Natural and Life Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria, 41000 (d.ayari@univ-soukahras.dz).

ORCID: 0000-0001-7182-5497 SCOPUS: 57208165372

Nora SAKHRAOUI

Doctor of Plant Biology, Associate Professor at the Department of Ecology and Environment, Faculty of Natural and Life Sciences, 20 August 1955 University, Skikda, P.O. Box 26, El Hadaiek Road, Algeria, 21000 (n.sakhraoui@univ-skikda.dz)

ORCID: 0000-0002-9853-5702 SCOPUS: 57210926752

Wided TOUIL

Doctor of Plant Biology, Associate Professor at the Department of Biology, Faculty of Natural and Life Sciences, Environmental Sciences and Agro-Ecology Laboratory, Chadli Bendjedid University, El Tarf, Algeria, 36000 (w.touil@univ-eltarf.dz)

ORCID: 0000-0002-2881-2866

To cite this article: Nouasria D., Ayari D., Sakhraoui N., Touil W. (2025). Etnobotanichne doslidzhennia ta inventaryzatsiia likarskykh roslyn, shcho vykorystovuiutsia v tradytsiinii medytsyni rehionu Skikda (pivnichnyi skhid Alzhyru) [Ethnobotanical study and inventory of medicinal plants used in traditional medicine in the Skikda region (northeast Algeria)]. *Fitoterapiia. Chasopys – Phytotherapy. Journal*, 3, 109–118, doi: https://doi.org/10.32782/2522-9680-2025-3-109

ETHNOBOTANICAL STUDY AND INVENTORY OF MEDICINAL PLANTS USED IN TRADITIONAL MEDICINE IN THE SKIKDA REGION (NORTHEAST ALGERIA)

Actuality. Traditional medicine has been, and still remains, widely used by populations who trust the popular uses of medicinal and aromatic plants and who cannot afford modern medical care.

The aim. To establish a list of medicinal plants used in traditional phytotherapy by the local population of two municipalities in the Skikda region (Collo and El Hadaiek).

Material and methods. This work was conducted through an ethnobotanical survey carried out in 2024 among the local population using 120 questionnaire forms.

Research results. The results allowed for the identification of 64 medicinal species belonging to 37 botanical families, with the Lamiaceae family being the most represented. Leaves were the most commonly used plant part, and most remedies were prepared as herbal teas. Analysis of the informants' profiles showed that women use medicinal plants more than men, with a usage rate exceeding 60%, and that the age group between 20 and 40 years is the most actively involved in this practice.

Among all the reported ailments, digestive disorders were the most frequently cited.

Conclusion. The study enriches the repertoire of plants used for therapeutic purposes in Algeria and contributes to enhancing knowledge about traditional medicine and preserving local traditional knowledge.

Key words: medicinal plants, ethnobotanical survey, traditional use, Skikda, Algeria.

Джауіда НУАСРІЯ

доктор біології рослин, доцент кафедри екології та навколишнього середовища факультету наук, 20 серпня 1955 року університет, м. Скікда, П/С 26, вул. Ель-Хадаєк, м. Алжир, Алжир, 21000 (di.nouasria@univ-skikda.dz)

ORCID: 0009-0008-9305-3318

Джаміла АЯРІ

доктор біологічних наук, доцент кафедри біології факультету природничих і біологічних наук, лабораторія водних і наземних екосистем, Університет Мохамеда Шеріфа Мессаадія, м. Сук-Ахрас, Алжир, 41000 (d.avari@univ-soukahras.dz)

ORCID: 0000-0001-7182-5497 SCOPUS: 57208165372

Hypa CAXPAYI

доктор біології рослин, доцент кафедри екології та навколишнього середовища факультету наук, 20 серпня 1955 року університет, П/С 26, вул. Ель-Хадаєк, м. Скікда, Алжир, 21000 (п.sakhraoui@univ-skikda.dz)

ORCID: 0000-0002-9853-5702 **SCOPUS:** 57210926752

Відед ТУІЛ

доктор біології рослин, доцент кафедри біології, Лабораторія екологічних наук та агроекології, факультет природничих та життєвих наук, Університет Чадлі Бенджедіда, м. Ель-Тарф, Алжир, 36000 (w.touil@univ-eltarf.dz)

ORCID: 0000-0002-2881-2866

Бібліографічний опис статті: Нуасрія Д., Аярі Д., Сахрауї Н., Туіл В. (2025). Етноботанічне дослідження та інвентаризація лікарських рослин, які використовуються у традиційній медицині регіону Скікда (північний схід Алжиру). *Фітомерапія*. *Часопис*, 3, 109–118, doi: https://doi.org/10.32782/2522-9680-2025-3-109

ЕТНОБОТАНІЧНЕ ДОСЛІДЖЕННЯ ТА ІНВЕНТАРИЗАЦІЯ ЛІКАРСЬКИХ РОСЛИН, ЯКІ ВИКОРИСТОВУЮТЬСЯ У ТРАДИЦІЙНІЙ МЕДИЦИНІ РЕГІОНУ СКІКДА (ПІВНІЧНИЙ СХІД АЛЖИРУ)

Актуальність. Традиційна медицина була й залишається дуже поширеною серед населення, яке довіряє народним способам використання лікарських і ароматичних рослин і не має доступу до сучасної медичної допомоги.

Мета дослідження — скласти перелік лікарських рослин, які використовуються у традиційній фітотерапії місцевим населенням двох муніципалітетів регіону Скікда (Колло й Ель-Хадаєк).

Матеріал і методи. Робота була проведена шляхом етноботанічного опитування, проведеного у 2024 році серед місцевого населення з використанням 120 анкет.

Результати дослідження. У результаті було ідентифіковано 64 лікарські види, що належать до 37 ботанічних родин, з яких родина Lamiaceae була найбільш представлена. Найчастіше використовуваною частиною рослин були листя, а більшість засобів готували як настої. Проведений аналіз профілів інформантів показав, що жінки використовують лікарські рослини частіше за чоловіків (понад 60%), а найбільш активною віковою групою є особи віком від 20 до 40 років. Серед усіх зазначених захворювань найбільш поширеними були розлади травної системи.

Висновок. Це дослідження збагачує перелік лікарських рослин, які використовуються в Алжирі, і сприяє розширенню знань про традиційну медицину та збереженню місцевих традиційних знань.

Ключові слова: лікарські рослини, етноботанічне опитування, традиційне використання, Скікда, Алжир.

Introduction. Actuality. Since ancient times, humanity has used various plants found in its environment to treat and cure all kinds of diseases. To this day, plants continue to play a crucial role in the art of healing worldwide.

According to the World Health Organization (2003), in some developing countries in Asia, Africa, and Latin America, 80% of the population relies on traditional medicine, especially in rural areas. This is due to its proximity, accessibility, affordability, and, most impor-

tantly, the lack of access to modern medicine in these regions (Zeggwagh et al., 2013).

Traditional medicine is undoubtedly an integral part of Algerian culture. In Algeria, traditional medicine has been widely practiced for a long time, thanks to the richness and diversity of its flora (Sakhraoui, 2025), which serves as a valuable phytogenetic reservoir, with approximately 3,000 species belonging to various botanical families (Bouzid et al., 2017).

Algeria, and particularly the Skikda region (Northeastern Algeria), with its diverse climate (Mediterranean, humid) and varied soil types, possesses a rich flora of medicinal plants, most of which grow wild. The valorization of these plants remains an area of great importance for the country.

The aim of the study light on ancestral knowledge that has no written records. Indeed, traditional know-how is currently held by only a few individuals and information on regional medicinal plants is highly fragmented, scattered and even scarce for certain areas such as Collo which is part of a biogeographical sector considered to be one of the hotspots of the Mediterranean basin, with a very high biodiversity index on a national scale (Véla & Benhouhou, 2007), making this study particularly valuable.

Whose objective is to compile a list of medicinal plants used in traditional phytotherapy by the local population of two areas.

In this article, we present the therapeutic use of medicinal plants in the Skikda region. This study, conducted through questionnaires and interviews with local residents of two municipalities (El Hadaiek and Collo).

Materials and research methods. The study was conducted in the Skikda province, located in northeastern Algeria, along the Mediterranean coast. More specifically, the surveys were carried out in two municipalities, Collo and El Hadaiek.

Collo is a mountainous and coastal municipality, situated in the Tell Atlas range. It is characterized by its dense forest cover, humid Mediterranean climate, and rich plant biodiversity. It is considered a biogeographical hotspot in Algeria, where traditional practices related to phytotherapy are still deeply rooted in the local culture.

El Hadaiek is a municipality located near the city of Skikda. It features gentler topography, combining agricultural areas and semi-urban neighborhoods, where traditional knowledge of medicinal plants still persists, although it is partly influenced by modern practices.

These two municipalities were selected for their ecological contrasts and cultural diversity in the use of medicinal plants.

The study was conducted in 2024 through interviews based on 120 questionnaire sheets (60 per municipality). The questionnaire was divided into two parts:

Personal Information: Collecting data about the respondent, such as age, gender, and education level.

Medicinal Plant Usage: Gathering information on the local/common name of the plant, the plant parts used, the method of preparation, the diseases treated, etc.

Participants were randomly selected for the survey.

The identification of the plant species mentioned in the questionnaires was carried out through a combination of

field observations and cross-referencing with recognized taxonomic and ethnobotanical sources. The vernacular names provided by respondents were first collected, then matched with their scientific equivalents using reference works such as (Quezel & Santa, 1962–1963). Additional verification was conducted using online databases such as The Plants of the World Online (POWO), managed by the Royal Botanic Gardens, Kew. This approach ensured accurate and rigorous identification and classification of the species, while taking into account regional variations in vernacular nomenclature.

Research results and their discussion. Field surveys revealed that knowledge of medicinal plants (parts used, properties, preparation methods) is the result of long-standing experience passed down by elders.

Ethnobotanical and Pharmacological Aspects. Use of Medicinal Plants. Plant Parts Used.

The results obtained indicate that in the El Hadaiek area, individuals aged 31 to 40 years are the most frequent users of medicinal plants, while in the Collo region, the 20 to 30-year-old age group has the highest usage rate.

People aged 41 to 60 years use medicinal plants occasionally, mainly when medical treatment does not yield results after a few days.

The youngest (<20 years old) and the oldest (>60 years old) have a mixed opinion regarding the use of medicinal plants (fig. 1).

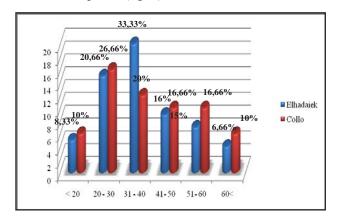


Fig. 1. Use of Medicinal Plants by Age Group

It is noted that women represent the most significant category in the use of medicinal plants to treat various diseases compared to men. Indeed, this category shows a higher percentage than men in the two localities of our study (fig. 2).

Education Level. In the Collo region, the highest use of medicinal plants was recorded among individuals with a university level, while in the El Hadaiek region, the highest usage was among those with a sec-

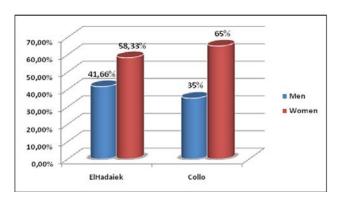


Fig. 2. Distribution of Medicinal Plant Users by Gender

ondary education level, compared to other user categories (fig. 3).

This knowledge has been passed down and instilled by older family members, such as parents, grandparents, or close relatives (e.g., uncles or aunts).

However, it was observed that illiterate groups and individuals with some level of education (such as primary and middle school levels) also exhibited a relatively high usage rate of medicinal plants.

In the Collo region, the usage rates were 11,66% for both illiterate and primary-level individuals and 8,33% for middle school-level individuals. In the El Hadaiek region, the rates were 16,66, 20, and 15%, respectively.

This finding highlights the growing awareness of the importance of phytotherapy, as well as the development and transmission of this ancestral tradition across various user categories.

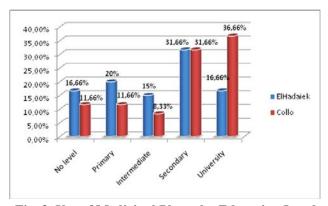


Fig. 3. Use of Medicinal Plants by Education Level

Use of Medicinal Plants. Plant Parts Used. Ethnobotanical surveys conducted among local populations in the study areas indicate a high frequency of leaf usage, followed by seeds. Flowers and aerial parts come next. Roots are used occasionally by a small proportion of respondents, while bark is used by 4,87%.

The use of bulbs, whole plants, flower buds, seed oils, and rhizomes is less common, with each accounting for 2,5% (fig. 4).

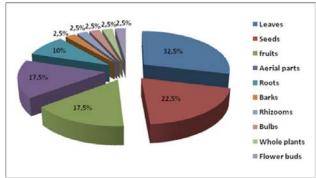


Fig. 4. Plant Parts Used in Medicinal Plants in the Two Study Areas

Method of Preparation. The majority of respondents prefer to prepare remedies in the form of herbal tea (70%). However, some others show a preference for using extracts, powders, and essential oils (fig. 5).

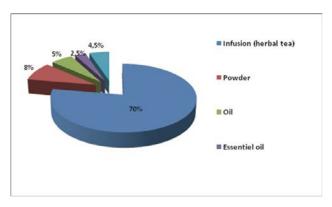


Fig. 5. Methods of Preparation

Treated Diseases. The survey results indicate that digestive system diseases are the most frequently treated. These are followed by respiratory system diseases, metabolic disorders such as diabetes, and neurological disorders, with a recorded prevalence of 5% for the latter.

Genitourinary disorders, glandular diseases, osteoarticular disorders, dermatological diseases, and cardiovascular disorders are the least represented, with percentages ranging between 1 and 3% (fig. 6).

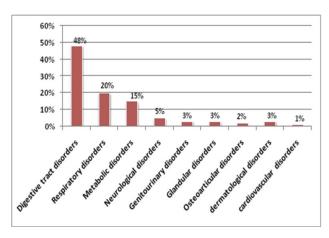


Fig. 6. Use of Medicinal Plants by Type of Disease

Inventory of Medicinal Plants. The study conducted in the northeastern region of Algeria allowed us to establish a final list of medicinal plants used by the local population to treat certain illnesses using various methods (table).

Distribution of Medicinal Plants by Botanical Families. The 64 species of wild medicinal plants recorded belong to 37 families. We note the predominance of *Lamiaceae*, followed by *Asteraceae*, *Apiaceae*, *Ranunculaceae* and *Rhamnaceae*. Seven families (*Ericaceae*, *Fabaceae*, *Linaceae*, *Myrtaceae*, *Papaveraceae*, *Poaceae*, *Plantaginaceae*) have a rate equal to 5,40%. The remaining families are represented by a rate of 2,70% (fig. 7).

The exploration of natural resources, particularly plants, continues to play a fundamental role, especially

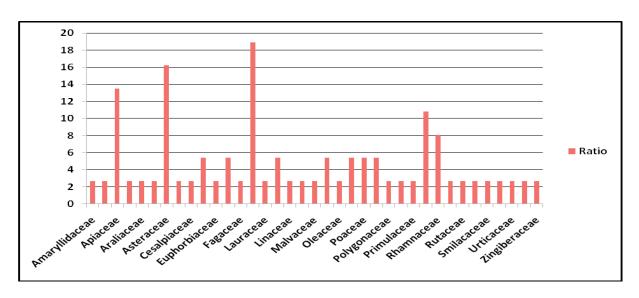


Fig. 7. Distribution of Medicinal Plants by Botanical Families (%)

Table

Medicinal plants and their uses in phytotherapy

production production and many contract of							
Latin Name	Family	Disease treated	Method of preparation	Part used	Status		
Allium triquetrum L.	Amaryllidaceae	Reduces blood cholesterol levels, tonsillitis	Decoction	Aerial parts, bulbs	Spontaneous		
Anagallis arvensis L.	Primulaceae	Skin diseases	Ointment	Aerial parts	Spontaneous		
Apium graveolens L.	Apiaceae	Reduces body acidity, bronchitis, sore throat	Infusion	Aerial parts	Spontaneous		
Arbutus unedo L.	Ericaceae	Astringent, diarrhea, antiseptic	Infusion	Fruits, leaves	Spontaneous		
Artemisia herba-alba Asso.	Asteraceae	Genital system, vomiting, stomach, intestinal worms	Decoction	Leaves	Spontaneous		
Asparagus acutifolius L.	Asparagaceae	Diuretic, kidney health	Decoction	Aerial parts	Spontaneous		
Asphodelus microcarpus Salzm. & Viv.	Asphodelaceae	Pain related to flu, burns	Infusion	Roots	Spontaneous		
Borago officinalis L.	Boraginaceae	Skin problems, scabies	Decoction	Leaves	Spontaneous		
Calendula arvensis L.	Asteraceae	Enuresis or bedwetting	Poultice	Flowers	Spontaneous		
Cassia acutifolia Del.	Fabaceae	Infections, fatigue	Infusion	Leaves, pods	Spontaneous		

Latin Name	Family	Disease treated	Method of preparation	Part used	Status
Ceratonia siliqua L.	Fabaceae	Colon, constipation, stomach	Infusion	Pods	Spontaneous
Citrus × limon (L.) Osbeck.	Rutaceae	Scurvy, colds, digestive problems	Infusion	Peel, oil	Cultivated
Clematis cirrhosa L.	Ranunculaceae	Antibacterial, antioxidant	Infusion	Leaves, fruits	Spontaneous
Crataegus azarolus L.	Rosaceae	Atherosclerosis, cardiac fatigue, hypertension	Powder, syrup	Fruits	Spontaneous
Crataegus monogyna Jacq.	Rosaceae	Atherosclerosis, cardiac fatigue, hypertension, hypotension	Syrup, infusion	Flowers, berries	Spontaneous
Cuminum cyminum L.	Apiaceae	Used to cool the spleen or reduce excess heat in the liver, improves appetite	Infusion	Seeds	Cultivated
Cynara humilis L.	Asteraceae	Liver diseases, cholesterol	Infusion	Leaves	Spontaneous
Daphne gnidium L.	Thymelaeaceae	Skin diseases	Tincture	External use	Spontaneous
Erica arborea L.	Ericaceae	Urinary tract infections, diuretic	Infusion	Leaves, flowers	Spontaneous
Eucalyptus globulus Labil.	Myrtaceae	Cough, cold, bronchitis	Tincture	Leaves, oil	Cultivated
Ficaria verna Huds.	Ranunculaceae	Hemorrhoids, varicose veins	Infusion, powder	Leaves (external)	Spontaneous
Foeniculum vulgare Mill.	Apiaceae	Digestive problems, colic	Decoction, infusion	Seeds, essential oil	Spontaneous
Fraxinus oxyphylla M.Bieb.	Oleaceae	Rheumatism, inflammation	Poultice	Leaves	Spontaneous
Fumaria capreolata L.	Papaveraceae	Skin disorders	Decoction	Aerial parts, leaves	Spontaneous
Hedera helix L.	Araliaceae	Cough, bronchitis	Infusion	Leaves	Cultivated
Hordeum vulgare L.	Poaceae	Digestive health, cholesterol	Infusion	Grains	Spontaneous
Dittrichia viscosa (L.) Greuter	Asteraceae	Wound healing, respiratory issues	Inhalation, poultice	Leaves	Spontaneous
Laurus nobilis L.	Lauraceae	Digestive issues, respiratory problems	Infusion	Leaves, oil	Spontaneous
Lavandula stoechas L.	Lamiaceae	Anxiety, insomnia, skin conditions.	Diluted oil	Essential oil	Spontaneous
Linum usitatissimum L.	Linaceae	Constipation, cholesterol, inflammation	Decoction	Seeds	Cultivated
Malva sylvestris L.	Malvaceae	Cough, sore throat, inflammation	Infusion	Leaves, flowers	Spontaneous
Marrubium vulgare L.	Lamiaceae	Cough, bronchitis, digestive aid	Infusion, decoction	Aerial parts	Spontaneous
Mentha pulegium L.	Lamiaceae	Digestive problems, menstrual disorders	Infusion	Leaves	Spontaneous
Mentha rotundifolia (L.) Huds.	Lamiaceae	Digestive aid, cold relief	Infusion	Leaves	Spontaneous
Myrtus communis L.	Myrtaceae	Respiratory infections, diarrhea,	Infusion	Leaves, oil	Spontaneous
Nerium oleander L.	Apocynaceae	Skin deases	Infusion	Leaves	Spontaneous
Nigella damascena L.	Ranunculaceae	Digestive and, respiratory issues	Infusion	Seeds	Spontaneous
Olea europaea L.	Oleaceae	Hypertension, cholesterol	Infusion	Leaves, oil	Spontaneous
Oxalis pes-caprae L.	Oxalidaceae	Diuretic, scurvy	Infusion	Leaves	Spontaneous
Pallenis spinosa (L.) Cass.	Asteraceae	Anti-inflammatory, wounds	Infusion	Leaves	Spontaneous
Papaver rhoeas L.	Papaveraceae	Cough, sedation, mild pain relief	Infusion, poultice	Leaves, flowers	Spontaneous
Petroselinum crispum (Mill.) Fuss.	Apiaceae	Diuretic, urinary disorders	Infusion	Leaves, roots	Cultivated and spontaneous
Pistacia lentiscus L.	Anacardiaceae	Gastrointestinal problems, burns	Infusion	Leaves, oil	Spontaneous
Plantago coronopus L.	Plantaginaceae	Cough, wound healing, inflammation	Infusion	Leaves	Spontaneous
Plantago lanceolata L.	Plantaginaceae	Wound healing	Infusion	Leaves	Spontaneous
Polypodium vulgare L.	Polypodiaceae	Cough, liver disorders	Decoction	Rhizome	Spontaneous

Latin Name	Family	Disease treated	Method of preparation	Part used	Status
Populus alba L.	Salicaceae	Anti-inflammatory, analgesic	Infusion	Bark, buds	Spontaneous
Punica granatum L.	Lythraceae	Diarrhea, parasites, antioxydant	Infusion, mastic resin	Peel, bark	Cultivated
Quercus suber L.	Fagaceae	Diarrhea, inflammation	Decoction	Bark	Spontaneous
Rhamnus alaternus L.	Rhamnaceae	Laxative, liver laxative, liver issues	Infusion	Leaves	Spontaneous
Ricinus communis L.	Euphorbiaceae	Constipation, anti-inflammatory	Infusion	Leaves, oil	Spontaneous
Rosmarinus officinalis L.	Lamiaceae	Memory, digestion	Infusion	Leaves, oil	Spontaneous
Rubus ulmifolius Schott.	Rosaceae	Diarrhea, mouth inflammation	Decoction	Leaves, fruits	Spontaneous
Salvia officinalis L.	Lamiaceae	Sore throat, digestion	Infusion	Leaves	Cultivated
Smilax aspera L.	Smilacaceae	Skin diseases, rheumatism	Decoction	Rhizome	Spontaneous
Thapsia garganica L.	Apiaceae	Joint pain (external use)	Infusion	Arial parts (External use only)	Spontaneous
Thymus vulgaris L.	Lamiaceae	Cough, bronchitis, antimicrobial	Infusion	Leaves	Spontaneous
Trigonella foenum-graecum L.	Fabaceae	Diabetes, digestion, lactation	Infusion	Seeds	Cultivated
Urginea maritima (L.) Baker.	Asparagaceae	Heart problems (caution: toxic)	Infusion	Leaves	Spontaneous
Urospermum dalechampii (L.) Scop.	Asteraceae	Digestive aid	Poultice	Flowers	Spontaneous
Urtica dioica L.	Urticaceae	Arthritis, urinary problems, anemia	Infusion	Leaves	Spontaneous
Viola odorata L.	Violaceae	Cough, insomnia, inflammation	Infusion	Flowers, leaves	Spontaneous
Zea mays L.	Poaceae	Urinary tract problems	Infusion	Stigmas, corn	Cultivated
Zingiber officinale Roscoe	Zingiberaceae	Nausea, inflammation, digestion	Infusion	Fresh or dried	Neither cultivated nor spon-taneous, sold on the markets

in human pharmacopoeia, where 75% of medicines originate from plants, and 25% of them contain at least one active molecule of plant origin (Abayomi, 2010). Indeed, the preservation and control of wild flora, as well as its utilization, have become particularly important (Hammoudi, 2015). The knowledge of the properties and uses of medicinal plants is generally acquired with age and through long experience passed down from one generation to another. The transmission of this knowledge is currently at risk because it is not always ensured.

Various studies have shown that older individuals are the ones who hold the most knowledge and are the most likely to provide reliable information on the virtues and uses of medicinal plants (Derridj et al., 2010; Boutabia et al., 2011; Bouasla & Bouasla, 2017; Miara et al., 2018; Lazli et al., 2019; Senouci et al., 2019). Indeed, women are the most knowledgeable and most involved in the understanding and use of medicinal plants. As caregivers responsible for household and children's health, they use medicinal plants more frequently than men.

These findings confirm the results recorded in other ethnobotanical studies, particularly those of Souilah (2018) and Nouasria (2022), which have shown that women have greater expertise in traditional herbal medicine in Algeria. For the level of education, the same results were reported by other authors (El Hilah et al., 2015; Boughrara&Legseir, 2016; Miara et al., 2018).

In phytotherapy, medicinal plants can be used whole or in parts (leaf, stem, root, bark, fruit) (Senouci et al., 2019). The importance of using leaves compared to other plant parts is due to the ease and speed with which they can be harvested (Kadri et al., 2018). Additionally, leaves play a role in photosynthesis and sometimes in storing secondary metabolites responsible for the plant's biological properties (Bakiri et al., 2016). The high rate of infused herbal teas used to prepare remedies is due to the fact that this method is the easiest and fastest to prepare. Additionally, it is the most suitable method for warming and disinfecting the body, as well as being the oldest and most well-known (Adossides, 2010). These

results are supported by those of (Petkeviciute et al., 2010), in contrast to the findings of (Giday et al., 2003), where most people use medicinal plants in the form of fresh juices.

As demonstrated by various studies, particularly those of (Mikou et al., 2015) and (Lazli et al., 2019), infusion is the most commonly adopted method. It is considered more beneficial and practical (Bouasla & Bouasla, 2017). This preparation method is best suited for delicate plant parts such as leaves, flowers, and flowering tops. In contrast, decoction is recommended for hard and compact plant parts (wood, bark, stems, roots), which release their active compounds only after a relatively long exposure to heat (Lazli et al., 2019).

According to Chevallier (2001), this unusual reliance on traditional medicine is explained by the fact that it offers natural remedies that are well accepted by the body without inducing side effects.

The Lamiaceae family is the most representative in our study region. The dominance of this family was also recorded in other Algerian provinces, notably Adrar and Chlef (Kadri et al., 2018; Maamar sameut et al., 2020), as well as in other neighboring countries such as Morocco (Benkhnigue et al., 2011; El Hilah et al., 2015).

Conclusions. The ethnobotanical survey conducted in the two regions, El Hadaiek and Collo

known for their rich floristic and ecological diversity, revealed that the local population possesses extensive knowledge of traditional phytotherapy.

This study allowed us to describe the various medicinal functions of plants as recognized by the local inhabitants. It highlights that all parts of the plants are used for therapeutic purposes.

The local populations of the study area place their trust in traditional medicine for their primary health-care needs. Therefore, coordinated efforts should be made to integrate traditional medicine practitioners into the healthcare system. However, despite the encouraging results of this ethnobotanical survey, precautions must be considered; it remains inadvisable to use a plant without consulting a specialist.

The valorization of medicinal plants can contribute to increased income, particularly among the rural population, which benefits from certain support projects in Algeria. The findings of this study provide valuable information that can be utilized in various scientific research fields, particularly pharmacology and phytochemistry.

Overall, the results obtained provide scientific justification for the widespread use of medicinal plants and further confirm their importance in the treatment of numerous diseases.

BIBLIOGRAPHY

Abayomi S. Medicinal plants and traditional medicine of Africa. Ibadan, Nigeria: Karthala Editions, 2010. 109 p.

Adossides A. The sector: aromatic & medicinal plants. Project "Assistance to Agricultural Census". FAO, Lebanon, 2003. 70 p. Bakiri N., Bezzi M., Khelifi L., Khelifi-Slaoui M. Ethnobotanical survey of the medicinal plant Peganum harmala L. in the M'sila Region. *Agriculture*. 2016. № 1. P. 38–42.

Benkhnigue O., Zidane L., Fadli M., Elyakoubi H., Rochdi A., Douira A. Ethnobotanical study of medicinal plants in the Mechraa Bel Ksiri Region (Gharb Region, Morocco). *Acta Bot. Barc.* 2011. № 53. P. 191–216.

Bouasla A., Bouasla I. Ethnobotanical survey of medicinal plants in northeastern of Algeria. *Phytomedicine*. 2017. № 36. P. 68–81. Boughrara B., Legseir B. Ethnobotanical study close to the population of the extreme north east of Algeria: The municipalities of El Kala National Park (EKNP). *Ind. Cro. Prod.* 2016. № 88. P. 2–7.

Boutabia L., Telailia S., Cheloufi R., Chefrour A. The medicinal flora of the Oum Ali forest massif (Zitouna – Wilaya of El Tarf – Algeria): Inventory and ethnobotanical study. *INRGREF*. 2011. № 15. Special Issue. P. 201–213.

Bouzid A., Chadli R., Bouzid K. Ethnobotanical study of the medicinal plant Arbutus unedo L. in the Sidi Bel Abbés Region of Western Algeria. *Phytothérapie*. 2017. № 15. P. 373–378. DOI: 10.1007/s10298-016-1027-6.

Chevallier A. Encyclopedia of medicinal plants. Paris, France: Larousse Editions, 2001. 335 p.

Derridj A., Ghemouri G., Meddour R., Meddour-Sahar O. Ethnobotanical approach to medicinal plants in Kabylie (Wilaya of Tizi Ouzou, Algeria). *Acta Hortic*. 2010. № 853. P. 425–434. DOI: 10.17660/ActaHortic.2010.853.52.

El Hilah F., Ben Akka F., Dahmani J., Belahbib N., Zidane L. Ethnobotanical study of medicinal plants used in the treatment of respiratory system infections in the Central Plateau of Morocco. *J. Anim. Plant Sci.* 2015. № 25 (2). P. 3886–3897.

Giday M., Asfaw Z., Elmqvist T., Woldu Z. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. *J. Ethnopharm.* 2003. № 85. P. 43–52. DOI: 10.1016/s0378-8741(02)00359-8.

Hammoudi R. Biological activities of some secondary metabolites extracted from medicinal plants of the Southern Algerian Sahara. PhD Thesis, University of Ouargla. Algeria, 2015. 166 p.

Kadri Y., Moussaoui A., Benmebarek A. Ethnobotanical study of some medicinal plants in a hyper-arid region of Southwestern Algeria: "The Case of Touat in the Wilaya of Adrar". *J. Anim. Plant Sci.* 2018. № 36 (2). P. 5844–5857.

Lazli A., Beldi M., Ghouri L., Nouri N. H. Ethnobotanical study and inventory of medicinal plants in the Bougous Region (El Kala National Park, Northeastern Algeria). *Bull. Soc. R. Sci. Liège*. 2019. № 88. P. 22–43. DOI: 10.25518/0037-9565.8429.

Maamar sameut Y., Belhacini F., Bounaceur F. Ethnobotanical study in the Southeast of Chlef (Western Algeria). *Agrobiologia*. 2020. № 10 (2). P. 2044–2061.

Miara M. D., Bendif H., Ait Hammou M., Teixidor-Toneu I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. *J. Ethnopha.* 2018. № 219. P. 248–256. DOI: 10.1016/j.jep.2018.03.011.

Mikou K., Rachiq S., Jarrar Oulidi A., Beniaich G. Ethnobotanical study of medicinal and aromatic plants used in the city of Fez, Morocco. *Phytotherapy*. 2015. DOI: 10.1007/s10298-015-0965-8.

Nouasria D. Study of floristic biodiversity in the Guelma Region. PhD Thesis. University of Badji Mokhtar Annaba. Algeria, 2022. 122 p.

Petkeviciute Z., Savickiene N., Savickas A., Bernatoniene J., Simaitiene Z., Kalveniene Z., Pranskunas A., Lazauskas R., Antanas Mekas T. Urban ethnobotany study in Samogitia region, Lithuania. *J. Med. Plant Res.* 2010. № 4 (1). P. 64–71.

Quezel P., Sant, S. New flora of Algeria and the Southern desert regions. 2 volumes. Paris: C.N.R.S., 1962-1963. 1170 p.

Sakhraoui N. Synopsis of medicinal succulent plants and their traditional uses in Algeria. *Bradleya*. 2025. № 43. P. 175–184. DOI: 10.25223/brad.n43.2025.a18.

Senouci F., Ababou A., Chouieb M. Ethnobotanical survey of the medicinal plants used in the Southern Mediterranean. Case Study: The Region of Bissa (Northeastern Dahra Mountains, Algeria). *Pharma. J.* 2019. № 11 (4). P. 647–659. DOI: 10.5530/pj.2019.11.103.

Souilah N. Study of the chemical composition and traditional and modern therapeutic properties of essential oils and phenolic compounds of some species from Northeastern Algeria. PhD Thesis. University of Frères Mentouri Constantine 1. Algeria, 2018. 188 p.

Véla E., Benhouhou S. Evaluation of a new plant biodiversity hotspot in the Mediterranean Basin (North Africa). *C. R. Biol.* 2007. № 330. P. 589–605. DOI: 10.1016/j.crvi.2007.04.006.

Zeggwagh A. A., Lahlou Y., Bousliman Y. Survey on the toxicological aspects of phytotherapy used by an herbalist in Fez, Morocco. *Pan Afr. Med. J.* 2013. № 14. P. 125. DOI: 10.11604/pamj.2013.14.125.1746.

REFERENCES

Abayomi, S. (2010). Likarski roslyny ta tradytsiina medytsyna Afryky [Medicinal plants and traditional medicine of Africa]. Ibadan, Nigeria, Karthala Editions.

Adossides, A. (2003). Sektor: aromatychni ta likarski roslyny [The sector: aromatic & medicinal plants]. Project "Assistance to Agricultural Census", FAO, Lebanon.

Bakiri, N., Bezzi, M., Khelifi, L., & Khelifi-Slaoui, M. (2016). Etnobotanichne doslidzhennia likarskoi roslyny Peganum harmala L. u rehioni M'sila [Ethnobotanical survey of the medicinal plant Peganum harmala L. in the M'sila Region]. Zhurnal "Silske hospodarstvo"- Agriculture, 1, 38–42.

Benkhnigue, O., Zidane, L., Fadli, M., Elyakoubi, H., Rochdi, A., & Douira, A. (2011). Etnobotanichne doslidzhennia likarskykh roslyn u rehioni Meshraa-Bel-Ksiri (rehion Harb, Marokko) [Ethnobotanical study of medicinal plants in the Mechraa Bel Ksiri Region (Gharb Region, Morocco)]. *Acta Bot. Barc*, 53, 191–216.

Bouasla, A., & Bouasla, I. (2017). Etnobotanichne obstezhennia likarskykh roslyn na pivnichesno-skhodi Alzhyru [Ethnobotanical survey of medicinal plants in northeastern of Algeria]. Phytomedicine, 36, 68–81.

Boughrara, B., & Legseir, B. (2016). Etnobotanichne doslidzhennia sered naselennia kraĭnoho pivnichno-skhidnoho rehionu Alzhyru: Hromady Natsionalnoho parku El Kala (EKNP) [Ethnobotanical study close to the population of the extreme north east of Algeria: The municipalities of El Kala National Park (EKNP)]. Ind. Cro. Prod., 88, 2–7.

Boutabia, L., Telailia, S., Cheloufi, R., & Chefrour, A. (2011). Likarska flora lisovoho masyvu Um Ali (Zitouna – Vilaia El-Tarf – Alzhyr): Inventaryzatsiia ta etnobotanichne doslidzhennia [The medicinal flora of the Oum Ali forest massif (Zitouna – Wilaya of El Tarf – Algeria): Inventory and ethnobotanical study]. INRGREF, 15, Special Issue, 201–213.

Bouzid, A., Chadli, R., & Bouzid, K. (2017). Etnobotanichne doslidzhennia likarskoi roslyny Arbutus unedo L. u rehioni Sidi Bel Abbes Zakhidnoho Alzhyru [Ethnobotanical study of the medicinal plant Arbutus unedo L. in the Sidi Bel Abbés Region of Western Algeria]. Phytotherapy, 15, 373–378. DOI: 10.1007/s10298-016-1027-6.

Chevallier, A. (2001). Entsyklopediia likarskykh roslyn [Encyclopedia of medicinal plants]. Larousse Editions, Paris, France.

Derridj, A., Ghemouri, G., Meddour, R., & Meddour-Sahar, O. (2010). Etnobotanichnyi pidkhid do likarskykh roslyn u Kabylii (Vilaia Tizi Uzu, Alzhyr) [Ethnobotanical approach to medicinal plants in Kabylie (Wilaya of Tizi Ouzou, Algeria)]. *Acta Hortic*, 853, 425–434. DOI: 10.17660/ActaHortic.2010.853.52.

El Hilah, F., Ben Akka, F., Dahmani, J., Belahbib, N., & Zidane, L. (2015). Etnobotanichne doslidzhennia likarskykh roslyn, yaki vykorystovuiut'sia dlia likuvannia infektsii dykhal'noi systemy na Tsentral'nomu ploskorivni Marokko [Ethnobotanical study of medicinal plants used in the treatment of respiratory system infections in the Central Plateau of Morocco]. *Journal of Animal and Plant Sciences*, 25 (2), 3886–3897.

Giday, M., Asfaw, Z., Elmqvist, T., & Woldu, Z. (2003). Etnobotanichne doslidzhennia likarskykh roslyn, shcho vykorystovuiut'sia narodom Zay v Etiopii [An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia]. *Journal of Ethnopharmacology*, 85, 43–52. DOI: 10.1016/s0378-8741(02)00359-8.

Hammoudi, R. (2015). Biolohichna aktyvnist deiakykh vtotynnykh metabolitiv, vydilenykh z likarskykh roslyn Pivdennoho Alzhyrskoho Sakhary [Biological activities of some secondary metabolites extracted from medicinal plants of the Southern Algerian Sahara]. PhD Thesis, University of Ouargla, Algeria, 166 p.

Kadri, Y., Moussaoui, A., & Benmebarek, A. (2018). Etnobotanichne doslidzhennia deiakykh likarskykh roslyn u nadzvychajno posushlyvomu rehioni pivdenno-zakhidnoho Alzhyru: "Vypadok Tuat u vilaii Adrar" [Ethnobotanical study of some medicinal plants in a hyper-arid region of Southwestern Algeria: "The Case of Touat in the Wilaya of Adrar"]. *Journal of Animal and Plant Sciences*, 36 (2), 5844–5857.

Lazli, A., Beldi, M., Ghouri, L., & Nouri, N.H. (2019). Etnobotanichne doslidzhennia ta inventaryzatsiia likarskykh roslyn u rehioni Buḥus (Natsional'nyi park El-Kala, pivnichno-skhidnyi Alzhyr) [Ethnobotanical study and inventory of medicinal plants in

the Bougous Region (El Kala National Park, Northeastern Algeria)]. Bulletin of the Royal Society of Sciences of Liège, 88, 22–43. DOI: 10.25518/0037-9565.8429.

Maamar sameut, Y., Belhacini, F., & Bounaceur, F. (2020). Etnobotanichne doslidzhennia na pivdenno-skhodi Chlefu (Zakhidnyi Alzhyr) [Ethnobotanical study in the Southeast of Chlef (Western Algeria)]. *Agrobiologia*, 10 (2), 2044–2061.

Miara, M.D., Bendif, H., Ait Hammou, M., & Teixidor-Toneu, I. (2018). Etnobotanichne obstezhennia likarskykh roslyn, shcho vykorystovuiut'sia kochevykamy v alzhyrskii stepi [Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe]. *Journal of Ethnopharmacology*, 219, 248–256. DOI: 10.1016/j.jep.2018.03.011 [13].

Mikou, K., Rachiq, S., Jarrar Oulidi, A., & Beniaich, G. (2015). Etnobotanichne doslidzhennia likarskykh ta aromatychnykh roslyn, shcho vykorystovuiut'sia u misti Fez, Marokko [Ethnobotanical study of medicinal and aromatic plants used in the city of Fez, Morocco]. *Phytotherapy*. DOI: 10.1007/s10298-015-0965-8.

Nouasria, D. (2022). Doslidzhennia florystychnoho riznomanittia rehionu Guelma. Dysertatsiia na zdobuttia naukovoho stupenia doktora filosofii. Universytet Badzhi Mokhtar, Annaba, Alzhyr [Study of floristic biodiversity in the Guelma Region. PhD Thesis. University of Badji Mokhtar Annaba, Algeria]. 122 p.

Petkeviciute, Z., Savickiene, N., Savickas, A., Bernatoniene, J., Simaitiene, Z., Kalveniene, Z., Pranskunas, A., Lazauskas, R., & Antanas Mekas, T. (2010). Miskoe etnobotanichne doslidzhennia v rehioni Zhamoitii, Lytva [Urban ethnobotany study in Samogitia region, Lithuania]. *Journal of Medecinal Plants Research*, 4 (1), 64–71.

Quezel, P., & Santa, S. (1962–1963). Nova flora Alzhyru ta pivdennykh pustelnykh rehioniv [New flora of Algeria and the Southern desert regions]. Paris: C.N.R.S., 2 volumes.

Sakhraoui, N. (2025). Khortkyi ohliad likarskykh sukulentnykh roslyn ta yikh tradytsiine vykorystannia v Alzhyri [Synopsis of medicinal succulent plants and their traditional uses in Algeria]. *Bradleya* 43, 175–184. DOI: 10.25223/brad.n43.2025.a18.

Senouci, F., Ababou, A., & Chouieb, M. (2019). Etnobotanichne obstezhennia likarskykh roslyn, shcho vykorystovuiut'sia na pivdennomu Sredzemnomori. Pryklad doslidzhennia: rehion Bissa (pivnichno-skhidni hory Dakhra, Alzhyr) [Ethnobotanical survey of the medicinal plants used in the Southern Mediterranean. Case Study: The Region of Bissa (Northeastern Dahra Mountains, Algeria)]. *Pharmaceutical Journal*, 11 (4), 647–659. DOI: 10.5530/pj.2019.11.103.

Souilah, N. (2018). Doslidzhennia khimichnoho skladu ta tradytsiinykh i suchasnykh likuvalnykh vlastyvostei efektnykh olii ta fenolovykh spoluk deiakykh vydiv z pivnichno-skhidnoho Alzhyru [Study of the chemical composition and traditional and modern therapeutic properties of essential oils and phenolic compounds of some species from Northeastern Algeria]. PhD Thesis. University of Frères Mentouri Constantine 1, Algeria. 188 p.

Véla, E., & Benhouhou, S. (2007). Evaluation of a new plant biodiversity hotspot in the Mediterranean Basin (North Africa) [Evaluation of a new plant biodiversity hotspot in the Mediterranean Basin (North Africa)]. *Copmtes Rendus Biology*, 330, 589–605. DOI: 10.1016/j.crvi.2007.04.006.

Zeggwagh, A.A., Lahlou, Y., & Bousliman, Y. (2013). Obstezhennia toksykolohichnykh aspektiv fitoterapii, yaku vykorystovuie travnyk u misti Fez, Marokko [Survey on the toxicological aspects of phytotherapy used by an herbalist in Fez, Morocco]. *Pan African Medical Journal*, 14, 125. DOI: 10.11604/pamj.2013.14.125.1746.

Стаття надійшла до редакції 05.05.2025 Стаття прийнята до друку 08.07.2025 Опубліковано: 15.10.2025

Conflict of interest: none.

Authors' contribution:

Nouasria D. – data collection and analysis, article writing, article revisions, conclusions;

Ayari D. – critical review;

Sakhraoui N. – article revisions, final approval of the article;

Touil W. – article revisions, conclusions.

Email address for correspondence with authors: dj.nouasria@univ-skikda.dz